SOLUBILITY PATTERNS FOR IONIC COMPOUNDS

Comprehensive data on solubility of a wide variety of ionic compounds in water have been available for centuries. Although *quantitative* data can be accessed as required, it is very important at an i/GCSE stage and beyond to know the likelihood of a particular ionic compound being soluble in water. Exceedingly useful generalizations are available in the shape of SOLUBILITY RULES.

Solubility Rules

- 1. All compounds containing **Group I metal ions** (e.g., Na¹⁺ and K¹⁺) or ammonium ions (NH₄¹⁺) are soluble in water.
- 2. All **nitrates** (NO₃¹⁻) and all common ethanoates (CH₃CO₂¹⁻) are soluble in water. All hydrogencarbonates (HOCO₂¹⁻ or HCO₃¹⁻) are soluble in water. (N.B. only those of Group I metals are obtainable in the solid state).
- 3. Chlorides are soluble in water except those of lead (Pb²⁺), silver (Ag⁺). (N.B. PbCl₂ is fairly soluble in *hot* water). Bromides (Br) and iodides (I) follow a *similar* pattern.
- 4. Sulphates (SO₄²⁻) are soluble in water except those of barium (Ba²⁺) & lead (Pb²⁺). Calcium sulfate, CaSO₄, is sparingly soluble.
 Chromates (CrO₄²⁻) follow a similar pattern to sulphates.
 N.B. silver chromate, Ag₂CrO₄, is insoluble in water.
- Oxides (O²⁻) and hydroxides (OH¹⁻) are insoluble in water except where rule 1. applies *i.e.*, those of Na¹⁺, K¹⁺ and NH₄¹⁺ are soluble in water.
 N.B. Calcium hydroxide, Ca(OH)₂, is *sparingly soluble* in water, with Sr(OH)₂ and Ba(OH)₂ becoming increasingly soluble such that Ba(OH)_{2(aq)} is a strong alkali.
- **6. Carbonates** (CO₃²⁻) & **sulphides** (S²⁻) are insoluble in water except where rule 1. applies *i.e.*, those of Na¹⁺, K¹⁺ and NH₄¹⁺ are soluble in water. N.B. Group 2 metal sulfides, *e.g.*, MgS, tend to hydrolyze in water with the formation of the metal hydroxide and hydrogen sulphide gas, H₂S_(g).
- 7. The *only* common soluble salts of lead (Pb²⁺) are its nitrate (NO₃¹⁻) and ethanoate (CH₃CO₂¹⁻). N.B. Silver ethanoate, AgCH₃CO₂, is *insoluble*.
- **8.** The common mineral acids (HC ℓ , H₂SO₄, HNO₃, *etc.*) are soluble in water.